
课程编号 | 课程名称 | 课程级别 | 学时 |
10600711z | 乳品工艺学 | 本科生课程 | 32 |
10600519z | 固态乳品科学与技术 | 本科生课程 | 32 |
10600514z | 蛋品科学与技术 | 本科生课程 | 32 |
210341 | 现代乳品加工学 | 硕士课程 | 32 |
310301 | 乳品工程技能综合试验 | 硕士课程 | 32 |
310302 | 固态乳制品科学与技术 | 硕士课程 | 32 |
110305 | 食品科学研究进展(博) | 博士课程 | 32 |
110303 | 乳品产业与科技专论 | 博士课程 | 32 |
1.黑龙江省自然科学基金优秀青年项目,基于脂肪球界面组成调控脂质消化代谢的分子机制研究,2023/07-2026/07,主持
2.黑龙江省自然科学基金委员会联合引导项目,益生菌契达干酪ACE抑制肽的消化稳定性及其肠道转运吸收机制的研究,2019/07-2022/07,主持
3.中国博士科学基金面上项目,乳脂肪球膜基于“肠道菌群-UCP1信号通路”调节脂质代谢的分子机制研究,2023/07-2025/07,主持
4.黑龙江省博士后面上项目,生命早期乳脂肪球膜摄入对肠道菌群建立及成年小鼠脂质代谢调节机制研究,2023/07-2025/07,主持
5.国家乳业技术创新中心项目,基于脂肪球界面组成改善婴配粉脂质消化代谢机制研究,2023/07-2026/06,主持
6.黑龙江省高校协同创新成果项目,功能性干酪系列食品加工关键技术研究及产品开发,2023/06-2024/06,主持
7.黑龙江省教育厅普通本科高等学校青年创新人才培养计划项目,干酪ACE抑制肽的消化稳定性及体内作用机制研究,2021/01-2023/12,主持
1. 《适合我国系列干酪食品加工关键技术及产品开发》,黑龙江省科学技术奖三等奖,2017年,排名第二
2. 《适合我国系列干酪食品加工关键技术及产品开发》,黑龙江省高校科技奖二等奖,2016年,排名第二
3. 《系列乳粉基料及高端乳粉加工关键技术及开发》,黑龙江省高校科技奖二等奖,2019年,排名第二
4. 《高端婴幼儿配方乳粉关键技术创新与产业化应用》,黑龙江省高校科学技术成果一等奖,2021年,排名第二
5. 《高端婴配乳粉核心配料关键技术创新及应用》,中国食品科学技术学会科技创新奖(技术进步)三等奖,2022年,排名第二
6. 《高端婴幼儿配方乳粉关键技术创新与产业化应用》,黑龙江省食品科学技术学会科技创新奖,2024年,排名第二
1.Regulating interfacial structure of fat globules based on milk fat globule membrane with milk phospholipids to improve physicochemical properties and fat digestion of infant formula emulsions, Food Hydrocolloids,2024, 157, 110433
2.Regulating fat globule structure of infant formula based on MFGM to promote lipid uptake by improving lipolysis, Food Hydrocolloids,2024,155,110167
3.Improving lipid digestion by modulating interfacial structure of fat globule based on milk fat globule membrane and different phospholipids,Food Hydrocolloids,2024, 150 109736
4.Regulating the lipid droplet interface based on milk fat globule membrane and milk proteins to improve lipid digestion of model infant formula emulsion, Food Hydrocolloids,2024,146,109187
5.Changes in interfacial composition and structure of milk fat globules are crucial regulating lipid digestion in simulated in-vitro infant gastrointestinal digestion, Food Hydrocolloids, 2023, 134, 108003
6.Comparative analysis of interfacial composition and structure of fat globules in human milk and infant formulas,Food Hydrocolloids,2022, 124, 107290
7.Ultrasound modification on milk fat globule membrane and soy lecithin to improve the physicochemical properties, microstructure and stability of mimicking human milk fat emulsions, Ultrasonics Sonochemistry,2024,105,106873
8.Influence of milk fat globule membrane and milk protein concentrate treated by ultrasound on the structural and emulsifying stability of mimicking human fat emulsions,Ultrasonics Sonochemistry,2022, 82, 105881
9.Improving fat globule structure to narrow metabolite gap between human milk and infant formulae,Food Chemistry, 2025,471,142797
10.Sphingomyelin-enriched milk phospholipids offer superior benefits in improving the physicochemical properties, microstructure, and surface characteristics of infant formula. Food Chemistry, 2025, 463, 141549.
11.Simulated in vitro infant digestion and lipidomic analysis to explore how the milk fat globule membrane modulates fat digestion,Food Chemistry, 2024, 447, 139008
12.Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Food Chemistry, 2020, 310, 125865
13.Insights into flavor quality and metabolites profiles of fresh cheese with different probiotics by SPME-GC-MS and untargeted metabolomics, Food Research International, 2024,197,115154
14.Human milk fat substitutes rich in 1,3-dioleoyl-2-palmitoylglycerol and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol simultaneously: Preparation strategy and simulated infant in vitro digestion, Food Research International, 2024,191,114736
15.Novel trends and challenges in fat modification of next-generation infant formula: Considering the structure of milk fat globules to improve lipid digestion and metabolism of infants,Food Research International, 2023, 174, 113574
16.Interaction between whey protein and soy lecithin and its influence on physicochemical properties and in vitro digestibility of emulsion: A consideration for mimicking milk fat globule,Food Research International,2023,163, 112181
17.The influence of MPL addition on structure, interfacial compositions and physicochemical properties on infant formula fat globules,Food Research International,2023,168,112769
18.Profiling of phospholipid classes and molecular species in human milk, bovine milk, and goat milk by UHPLC-Q-TOF-MS,Food Research International,2022,161, 111872
19.Potato protein: An emerging source of high quality and allergy free protein and its possible future based products. Food Research International, 2021, 148, 110583
20.Simulated in vitro infant gastrointestinal digestion of infant formulas containing different fat sources and human milk: Differences in lipid profiling and free fatty acid release. Journal of Agricultural and Food Chemistry, 2021, 69(24):6799-6809
21.Effect of particle size and interface composition on the lipid digestion of droplets covered with membrane phospholipids. Journal of Agricultural and Food Chemistry, 2021, 69(1): 159-169
22.Comparative lipidomics analysis of human milk and infant formulas using UHPLC-Q-TOF-MS. Journal of Agricultural and Food Chemistry, 2021, 69(3):1146-1155
23.Comparative analysis of lipid digestion characteristics in human, bovine and caprine milk based on simulated in vitro infant gastrointestinal digestion. Journal of Agricultural and Food Chemistry, 2021, 69, 10104-10113
24.Identification, inhibition modes, and molecular docking of ACE inhibitory peptides derived from Cheddar cheese,LWT-Food Science and Technology,2024,203,116326
25.Stabilization of human milk fat analog emulsions using milk fat globule membrane material-coated lipid droplets: Structural and physical properties,LWT-Food Science and Technology,2023,171,114154
26.Improvement in bioactive, functional, structural and digestibility of potato protein and its fraction patatin via ultra-sonication, LWT-Food Science and Technology, 2021, 148, 111747
27.Characterization and anti-hyper-lipidemic effect of micro encapsulated phytosterol enriched cheddar cheese. LWT-Food Science and Technology, 2020, 123, 110114
28.Identification of antioxidant peptides from Cheddar cheese made with Lactobacillus helveticus. LWT-Food Science and Technology, 2021, 141(2):110866
29.Proteolysis and ACE-inhibitory peptide profile of Cheddar cheese: Effect of digestion treatment and different probiotics. LWT-Food Science and Technology, 2021, 145, 111295
30.Effect of Lactobacillus rhamnosus on the antioxidant activity of Cheddar cheese during ripening and under simulated gastrointestinal digestion. LWT-Food Science and Technology, 2018, 95:99-106
31.Effect of microencapsulation with Maillard reaction products of whey proteins and isomaltooligosaccharide on the survival of Lactobacillus rhamnosus, LWT- Food Science and Technology, 2016, 73: 37-43
32.Effect of ultrasound assisted heating on structure and antioxidant activity of whey protein peptide grafted with galactose, LWT-Food Science and Technology, 2019, 109:130-136
33.Effect of microencapsulation with the Maillard reaction products of whey proteins and isomaltooligosaccharide on the survival rate of Lactobacillus rhamnosus in white brined cheese. Food Control, 2017, 79: 44-49
34.Milk fat globule membranes ameliorate diet-induced obesity in mice by modulating glucolipid metabolism, body inflammation, and oxidative stress, Food & Function, 2024,15,11903-11917
35.Enhancing the physicastability and bioaccessibility of curcumin emulsions through the interaction of whey protein isolate and soybean lecithin,Food Bioscience,2024,58,103676.
36.Antihypertensive mechanism of the medicine food homology compound solution with high ACE inhibition rate based on network pharmacology and molecular docking,Food Bioscience,2024,62,105077
38.A comparative analysis of lipid digestion in human milk and infant formulas based on simulated in vitro infant gastrointestinal digestion. Foods, 2022, 11, 200
39.The peptide fractions of Cheddar cheese made with Lactobacillus helveticus 1.0612 play protective effects in H2O2 induced oxidative damaged Caco-2 cells models. Foods, 2023,12(14)2790
40.The addition of probiotic promotes the release of ACE-I peptide of Cheddar cheese: Peptide profile and molecular docking, International Dairy Journal, 2023,137,105507
41.Covalent conjugation of whey protein isolate hydrolysates and galactose through Maillard reaction to improve the functional properties and antioxidant activity. International Dairy Journal, 2020, 102, 104584.
42.The effects of Lactobacillus plantarum combined with inulin on the physicochemical properties and sensory acceptance of low-fat Cheddar cheese during ripening. International Dairy Journal, 2021, 115:104947
1.含有植物乳杆菌和干酪乳杆菌的抗氧化契达干酪及其制备方法,2020.11.10,中国,ZL201710012032.7,第二
2.含有低聚异麦芽糖和鼠李糖乳杆菌的干酪及其生产方法,2015.8.12,中国,ZL201310743236.X,第二
3.一种降血压牛乳配方奶粉及其制备方法(Blood pressure lowering cow-milk formula milk powder and preparation method thereof),2021.12.3,荷兰,2029451,第二
4.一种具有益生功能的婴幼儿配方奶粉复合包及其制备方法(Complex pack of infant formula milk power with prebiotic function and preparation method thereof),2022.11.30,荷兰,2029452,第二
5.一种油脂脂质体及其制备方法,2023.8.11,中国,ZL201910989140.9,第三
6.含有微胶囊化降胆固醇植物乳杆菌的white-brined干酪及其制备方法,2020.07.10,中国,ZL201710011747.0,第三
7.一种模拟母乳脂肪酸的复配油脂及含有该复配油脂的婴幼儿配方羊奶粉及该奶粉的制备方法,2021.11.09,中国,ZL201811340961.1,第三
8.一种高降胆固醇活性的低脂契达干酪及其制备方法,2021.04.08,中国,ZL201710950376.2,第四
9.一种干酪抗氧化肽的制备方法,2021.06.01,中国,ZL201710950377.7,第四
10.含有植物甾醇酯微胶囊的夸克干酪及其制备方法,2021.04.13,中国,ZL201611255833.8,第四
11.含有产胞外多糖干酪乳杆菌的低脂契达干酪及其制备方法,2015.6.17,中国,ZL201310743315.0,第六
1.黑龙江省高层次人才
2.黑龙江省普通本科高等学校青年创新人才
3.东农学者“学术骨干”、“青年才俊”
4.东北农业大学第五届课堂教学质量奖一等奖
5.第六届黑龙江省高校青年教师教学竞赛三等奖
6.黑龙江省高校和科研院所职工科技创新成果转化大赛二等奖
7.第十二届东北农业大学青年教师教学竞赛工科组一等奖
8.东北农业大学第二届课程思政教学竞赛特等奖
9.首届骆承祥杯青年教师技能大赛一等奖
10.第二届东北农业大学教学创新大赛二等奖